Salience maps in parietal cortex: Imaging and computational modeling

نویسندگان

  • Chantal Roggeman
  • Wim Fias
  • Tom Verguts
چکیده

Models of spatial attention are often based on the concept of a salience map. In computational cognitive neuroscience, such maps are implemented as a collection of nodes with self-excitation and lateral inhibition between all nodes (competitive interaction map). Here, we test some critical predictions of this idea. We argued that task demands, more precisely the level of attention required, can top-down modulate the level of lateral inhibition in a salience map, and thus induce different activation functions. We first show that a model with a high lateral inhibition parameter generates a monotonous activation curve as a function of set size similar to that typically observed in the literature (e.g. Todd and Marois, 2004). Next, we show that a competitive interaction map with medium lateral inhibition leads to a Lambda-shaped activation curve when set sizes increase. This prediction is confirmed in an fMRI experiment with medium attention demands where a similar Lambda-shaped activation curve is found in a posterior superior parietal area that was proposed to house a salience map (Todd and Marois, 2004). Finally, we show that a qualitatively different V-shaped activation curve is predicted with a very low inhibition parameter. An fMRI experiment with low attentional demands revealed this V-shaped activation curve in the same region. These findings provide critical support for the existence of a salience map based on competitive interactions in posterior superior parietal cortex, and suggest that its parameters (in particular, lateral inhibition) can be modulated in a top down manner dependent on task demands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual salience improves spatial working memory via enhanced parieto-temporal functional connectivity.

In everyday life, the brain is bombarded with a multitude of concurrent and competing stimuli. Only some of these enter consciousness and memory. Attention selects relevant signals for in-depth processing depending on current goals, but also on the intrinsic properties of stimuli. We combined behavior, computational modeling, and functional imaging to investigate mechanisms supporting access to...

متن کامل

Developmental Maturation of Dynamic Causal Control Signals in Higher-Order Cognition: A Neurocognitive Network Model

Cognitive skills undergo protracted developmental changes resulting in proficiencies that are a hallmark of human cognition. One skill that develops over time is the ability to problem solve, which in turn relies on cognitive control and attention abilities. Here we use a novel multimodal neurocognitive network-based approach combining task-related fMRI, resting-state fMRI and diffusion tensor ...

متن کامل

The Left Intraparietal Sulcus Modulates the Selection of Low Salient Stimuli

Neuropsychological and functional imaging studies have suggested a general right hemisphere advantage for processing global visual information and a left hemisphere advantage for processing local information. In contrast, a recent transcranial magnetic stimulation study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior par...

متن کامل

Competition between Visual Events Modulates the Influence of Salience during Free-Viewing of Naturalistic Videos

In daily life the brain is exposed to a large amount of external signals that compete for processing resources. The attentional system can select relevant information based on many possible combinations of goal-directed and stimulus-driven control signals. Here, we investigate the behavioral and physiological effects of competition between distinctive visual events during free-viewing of natura...

متن کامل

Computational modeling of dynamic decision making using connectionist networks

In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 52 3  شماره 

صفحات  -

تاریخ انتشار 2010